Tutorials
Learn how to build powerful automations with step-by-step tutorials.
Getting Started Tutorials
Your First AI Workflow
Build a simple workflow that uses AI to process text:
-
Create a Start Node
- Add input data:
{ "text": "Hello World" }
- Add input data:
-
Add an Agent Node
- Model: GPT-5
- Prompt: "Translate this to Spanish: {{input.text}}"
- Temperature: 0.3
-
Connect and Execute
- Draw connection from Start to Agent
- Click the Run button (▶️) in the top toolbar
- View the translation result
Data Processing Pipeline
Transform and enrich data through multiple steps:
-
Start with Raw Data
{ "users": [ { "name": "Alice", "age": 30 }, { "name": "Bob", "age": 25 } ] }
-
Loop Through Users
- Add Loop Node (For Each)
- Array Path:
users
-
Enrich Each User
- Inside loop: Add Agent Node
- Prompt: "Generate a bio for {{item.name}} who is {{item.age}} years old"
-
Collect Results
- Connect loop output to final Action node
- Transform to desired format
API Integration Tutorials
REST API Automation
Connect to external APIs and process responses:
1. Fetch Data from API
Start → Action (HTTP Request) → Process Data
Action Configuration:
{
"method": "GET",
"url": "https://api.example.com/data",
"headers": {
"Authorization": "Bearer {{env.API_TOKEN}}"
}
}
2. Process API Response
Add Agent node to analyze data:
Prompt:
Analyze this API response and extract key insights:
{{previousNode.output}}
Format as bullet points.
3. Send Results
Use Action node to send processed data:
{
"method": "POST",
"url": "https://webhook.site/unique-id",
"body": {
"insights": "{{previousNode.output}}",
"timestamp": "{{now}}"
}
}
Webhook Integration
Receive and process webhook events:
-
Create Trigger Node
- Type: Webhook
- Generate unique URL
-
Validate Webhook Data
- Add Condition Node
- Check:
input.event === "user.created"
-
Process Valid Events
- True branch: Process new user
- False branch: Log and skip
-
Send Confirmation
- Action node with HTTP response
Email Automation
Automated Email Responses
Build an intelligent email responder:
Workflow Structure
Email Trigger → Analyze Content → Generate Response → Send Reply
1. Set Up Email Trigger
{
"trigger": "email",
"filter": {
"to": "support@example.com",
"subject": "contains('help')"
}
}
2. Analyze with AI
Agent Node Configuration:
- Model: GPT-5
- System: "You are a helpful customer support agent"
- Prompt:
Analyze this email and determine:
1. Customer sentiment
2. Main issue
3. Urgency level
Email: {{input.body}}
3. Generate Response
Second Agent Node:
Based on this analysis: {{previousNode.output}}
Write a professional response to: {{input.body}}
Be helpful, empathetic, and provide clear next steps.
4. Send Reply
Email Action Node:
{
"to": "{{input.from}}",
"subject": "Re: {{input.subject}}",
"body": "{{previousNode.output}}",
"cc": "support-team@example.com"
}
Data Transformation
CSV to JSON Processing
Convert and enrich CSV data:
- Read CSV File
// Action Node: Parse CSV
const rows = parseCSV(input.csvData);
return { data: rows };
- Transform Each Row
// Loop + Action Node
return {
id: generateId(),
...item,
processed: true,
timestamp: new Date().toISOString()
};
- Aggregate Results
// Join Node
return {
total: input.length,
processed: input,
summary: generateSummary(input)
};
AI-Powered Workflows
Content Generation Pipeline
Create a complete content generation system:
1. Research Phase
Start → Agent (Research) → Extract Key Points
Research Prompt:
Research the topic: {{input.topic}}
Provide 5 key facts with sources.
2. Content Creation
Key Points → Fork → [Blog Post, Social Media, Email]
Blog Post Branch:
Write a 500-word blog post about {{input.topic}}
using these key points: {{research.keyPoints}}
Tone: Professional but engaging
Include: Introduction, 3 main sections, conclusion
Social Media Branch:
Create 3 social media posts about {{input.topic}}:
1. Twitter thread (3-5 tweets)
2. LinkedIn post (150 words)
3. Instagram caption (100 words)
Key points: {{research.keyPoints}}
3. Review and Publish
Join Results → Review Agent → Publish Actions
Sentiment Analysis Pipeline
Analyze customer feedback at scale:
-
Collect Feedback
- Source: API, Database, or File
- Format: Array of feedback objects
-
Parallel Analysis
Feedback → Fork → [Sentiment, Topics, Urgency]
- Sentiment Branch
Analyze sentiment (positive/negative/neutral):
{{input.feedback}}
Return: { sentiment: "...", score: 0-1 }
- Topic Extraction
Extract main topics and categories from:
{{input.feedback}}
Return: { topics: [...], categories: [...] }
- Urgency Detection
Determine urgency level (1-5) for:
{{input.feedback}}
Consider: Keywords, sentiment, explicit requests
- Aggregate and Act
// Join Node
const results = {
feedback: input.original,
sentiment: input.sentiment,
topics: input.topics,
urgency: input.urgency,
action: determineAction(input)
};
// Route to appropriate team
if (results.urgency >= 4) {
notifyUrgent(results);
}
Web Scraping
Automated Data Collection
Extract data from websites:
- Fetch Web Page
// Action Node: HTTP Request
{
"method": "GET",
"url": "{{input.targetUrl}}",
"headers": {
"User-Agent": "Mozilla/5.0..."
}
}
- Extract Data
// Action Node: Parse HTML
const $ = cheerio.load(input.html);
const data = {
title: $('h1').text(),
price: $('.price').text(),
description: $('.description').text(),
images: $('img').map((i, el) => $(el).attr('src')).get()
};
return data;
- Process with AI
Summarize this product information:
{{extractedData}}
Include: Key features, price analysis, recommendations
Advanced Patterns
Error Handling Pattern
Build robust workflows with error handling:
Try Block → [Success Path]
→ [Error Handler] → Log → Notify → Recover
Retry Pattern
Implement automatic retries:
// Loop Node with retry logic
{
"maxRetries": 3,
"backoff": "exponential",
"condition": "output.success === false"
}
Circuit Breaker Pattern
Prevent cascade failures:
// Condition Node
if (failureCount > threshold) {
return { circuitOpen: true, fallback: true };
}
Best Practices
1. Start Simple
- Test each node individually
- Build incrementally
- Use sample data
2. Handle Edge Cases
- Check for null/undefined
- Validate data formats
- Plan for API failures
3. Optimize Performance
- Use parallel processing
- Cache when possible
- Minimize API calls
4. Document Your Workflows
- Name nodes descriptively
- Add comments in complex logic
- Document expected inputs/outputs
Next Steps
- Node Reference - Detailed node documentation
- Plugin Tutorials - Service-specific guides
- API Documentation - Technical reference
- Community Examples - Real-world workflows